Human audiometric thresholds do not predict specific cellular damage in the inner ear.

نویسندگان

  • Lukas D Landegger
  • Demetri Psaltis
  • Konstantina M Stankovic
چکیده

INTRODUCTION As otology enters the field of gene therapy and human studies commence, the question arises whether audiograms - the current gold standard for the evaluation of hearing function - can consistently predict cellular damage within the human inner ear and thus should be used to define inclusion criteria for trials. Current assumptions rely on the analysis of small groups of human temporal bones post mortem or from psychophysical identification of cochlear "dead regions" in vivo, but a comprehensive study assessing the correlation between audiometric thresholds and cellular damage within the cochlea is lacking. METHODS A total of 131 human temporal bones from 85 adult individuals (ages 19-92 years, median 69 years) with sensorineural hearing loss due to various etiologies were analyzed. Cytocochleograms - which quantify loss of hair cells, neurons, and strial atrophy along the length of the cochlea - were compared with subjects' latest available audiometric tests prior to death (time range 5 h-22 years, median 24 months). The Greenwood function and the equivalent rectangular bandwidth were used to infer, from cytocochleograms, cochlear locations corresponding to frequencies tested in clinical audiograms. Correlation between audiometric thresholds at clinically tested frequencies and cell type-specific damage in those frequency regions was examined by calculating Spearman's correlation coefficients. RESULTS Similar audiometric profiles reflected widely different cellular damage in the cochlea. In our diverse group of patients, audiometric thresholds tended to be more influenced by hair cell loss than by neuronal loss or strial atrophy. Spearman's correlation coefficient across frequencies was at most 0.7 and often below 0.5, with 1.0 indicating perfect correlation. CONCLUSIONS Audiometric thresholds do not predict specific cellular damage in the human inner ear. Our study highlights the need for better non- or minimally-invasive tools, such as cochlear endoscopy, to establish cellular-level diagnosis and thereby guide therapy and monitor response to treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AWARD NUMBER: W81XWH-15-1-0472 TITLE: Preclinical Validation of Novel Fluorescently Labeled Compounds to Treat Neurodegenerative Hearing Loss PRINCIPAL INVESTIGATOR:

Introduction: As otology enters the field of gene therapy and human studies commence, the questionarises whether audiograms e the current gold standard for the evaluation of hearing function e canconsistently predict cellular damage within the human inner ear and thus should be used to defineinclusion criteria for trials. Current assumptions rely on the analysis of small groups of h...

متن کامل

Detecting incipient inner-ear damage from impulse noise with otoacoustic emissions.

Audiometric thresholds and otoacoustic emissions (OAEs) were measured in 285 U.S. Marine Corps recruits before and three weeks after exposure to impulse-noise sources from weapons' fire and simulated artillery, and in 32 non-noise-exposed controls. At pre-test, audiometric thresholds for all ears were <or=25 dB HL from 0.5 to 3 kHz and <or=30 dB HL at 4 kHz. Ears with low-level or absent OAEs a...

متن کامل

Using a combination of click- and tone burst-evoked auditory brain stem response measurements to estimate pure-tone thresholds.

DESIGN A retrospective medical record review of evoked potential and audiometric data were used to determine the accuracy with which click-evoked and tone burst-evoked auditory brain stem response (ABR) thresholds predict pure-tone audiometric thresholds. METHODS The medical records were reviewed of a consecutive group of patients who were referred for ABR testing for audiometric purposes ove...

متن کامل

Effect of sound classification by neural networks in the recognition of human hearing

In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...

متن کامل

Evaluation of the acoustic function in pseudoexfoliation syndrome and exfoliation glaucoma: audiometric and tympanometric findings.

PURPOSE Previous studies have reported increased audiometric thresholds in patients with pseudoexfoliation syndrome (XFS), compared with normative data. This study examines mean audiometric thresholds and tympanometric peak values in patients with XFS and in a control group. METHODS This is a prospective, nonrandomized control case study. Patients with XFS in one or both eyes constituted the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hearing research

دوره 335  شماره 

صفحات  -

تاریخ انتشار 2016